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Abstract – Verification & Validation (V&V) is a widely 
recognized and critical systems engineering function. 
However, the often used definition “Verification proves 
the design is right; validation proves it is the right design” 
is rather vague.  And while Verification is a reasonably 
well standardized systems engineering process, Validation 
is a far more abstract concept and the rigor and scope 
applied to it varies widely between organizations and 
individuals. This is reflected in the findings in recent 
Mishap Reports for several NASA missions, in which 
shortfalls in Validation (not just Verification) were cited 
as root- or contributing-factors in catastrophic mission 
loss. Furthermore, although there is strong agreement in 
the community that Test is the preferred method for 
V&V, many people equate “V&V” with “Test”, such that 
Analysis and Modeling aren’t given comparable attention. 
Another strong motivator is a realization that the rapid 
growth in complexity of deep-space missions (particularly 
Planetary Landers and Space Observatories given their 
inherent unknowns)  is placing greater demands on 
systems engineers to “get it right” with Validation. 
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1. MOTIVATIONS 

 
Increasing complexity of the missions being launched 
represents an important driver on the rigor employed in 
the Systems Engineering disciplines of Validation & 
Verification (V&V). The upcoming suite of deep-space 
missions requires dramatic new technologies in many 
cases.  In the space-astronomy arena, missions are driving 
the state of the art in many areas: Kepler’s few parts-per-

million photometry, the Space Interferometry Mission 
(SIM)’s few micro-arcsecond astrometry, the Laser 
Interferometric Space Antenna (LISA)’s fempto-G 
acceleration sensing, and the Terrestrial Planet Finder 
(TPF)’s ultra-high contrast (10-10) imaging needs are all 
setting new targets for performance. Getting new 
technologies such as pico-meter metrology, sub-angstrom 
optical wavefront control, and separated-spacecraft, 
cryogenic nulling interferometry to work on Earth is 
difficult enough. The Validation challenges associated 
with converting these to reliable, space-borne systems are 
formidable.  
 
Likewise, as the scope of NASA’s Solar System 
Exploration Program expands, future missions to Mars 
and the outer planets drive the need for highly 
autonomous spacecraft remote-agents, real-time hazard 
sensing and avoidance in planetary landers, advanced 
propulsion and energy systems, and the ability to operate 
in extremely high radiation environments.  Many of the 
above capabilities are cost-prohibitive or impractical to 
test in an end-to-end fashion prior to launch, thus placing 
an increased burden on modeling and simulation as part 
of a robust Validation program.  There is also a caution 
here: projects faced with daunting technological 
challenges often succumb to tunnel vision and focus on 
“invention” while neglecting the more mundane aspects 
of the system, such as the spacecraft bus.   Flight in deep-
space is still far from routine.  Projects must continue to 
apply significant attention to basic health and safety 
issues, such as fault tolerance and fault protection design 
and validation.  [Note: while this paper focuses on Deep-
Space missions, these concepts should be applicable to 
other types of space missions and complex systems in 
general]. 
 
Another motivation (and the central thesis here) is the 
specific role of Validation as distinct from Verification. 
Some observations follow. Verification is a well-
established SE process. However, in the author’s 
experience, Validation is a fuzzy, organic, poorly-
understood concept (or at the very least, “your mileage 
may vary” widely between projects and organizations).  
Another observation: test is the preferred method for 
Validation & Verification. As a result, many system  



engineers equate V&V with Test – to the extent that 
Modeling & Analysis aren’t given comparable attention. 
For example, the concept of Test As You Fly (TAYF) is 
broadly recognized in the aerospace community. 
However, we have no global recognition of a similar 
concept for Model As You Fly (MAYF). With growing 
mission complexity the need to identify and validate 
mission-critical models is becoming increasingly 
important. And a final motivating observation about 
Validation – we must learn to recognize that no Model or 
Test is perfect – hence the system engineer must 
rigorously establish Model Uncertainty Factors (MUFs) 
and Test Uncertainty Factors (TUFs). 
 
 

2. SOME DIFFICULT LESSONS 
 
Recent attempts to implement missions with the “faster, 
better, cheaper” (FBC) approach  have suffered from 
mixed results. On the one hand, the Mars Pathfinder, 
Lunar Prospector, Near Earth Asteroid Rendezvous 
(NEAR), Deep Space 1 (DS1), and Deep Impact missions 
were successfully implemented in the FBC mode.  
However, those successes have been tempered by 
catastrophic failures of the Mars Climate Orbiter (MCO), 
Mars Polar Lander (MPL), Wide-field Infrared Explorer 
(WIRE), and Comet Nucleus Tour (CONTOUR) missions  
and Genesis hard-landing.  This mixed track record 
encourages continued refinement of our project 
implementation practices to emphasize “success first”, 
and in particular, the validation techniques needed to 
ensure system robustness critical on missions with 
relatively small teams in which every “link” in the risk-

avoidance chain must be protected. One should also 
remember the lessons of the Hubble Space Telescope 
(HST), Mars Observer (MO), and Columbia, which 
demonstrated that greater resources do not always 
correlate to reduced risk.  Lessons-learned reports for 
such missions repeatedly highlight the paramount 
importance of a thorough end-to-end V&V program when 
trying to balance risk and cost. Validation techniques, 
which are often less consistently applied than Verification 
activities, hence result in some of the major findings in 
various mishap reports, as shown in Table 1.  
 
 

3. CONTEXT & TERMINOLOGY 
 
While Independent Validation & Verification (IV&V) of 
software has received considerable attention recently, 
standards for the broader mission-level V&V activity are 
rather fuzzy (despite attempts by ISO and other 
organizations), other than the mundane aspects of 
verification. Likewise, the scale of mission-level V&V 
efforts and basic approach varies widely from project-to-
project.  In fact, there appears to be a cultural aspect of 
how validation is treated in various organizations. 
Namely,  “great system houses” are often adept at using 
validation to catch problems in the design phase whereas 
“great integration houses” have demonstrated an ability to 
find creative solutions for horrendous problems that arise 
late in the implementation phase[5].  Missions have been 
successfully implemented by both cultures but the latter 
typically suffers from increased risk and higher costs (it’s 
cheaper to correct problems earlier).   
 

Mission/year Mishap  Validation-related Contributing Factors 
Genesis/2004 
 

G-switch installed backward  
parachute not deployed  hard 
landing 

“no system-level test” (of G-switch)  

Columbia/2003 
 

debris damaged thermal tiles  loss 
of crew and vehicle 
 

 “current tools, including the Crater model, 
are inadequate …”  
“flight configuration was validated using 
extrapolated test data … rather than direct 
testing” [1] 

Comet Nucleus Tour 
(CONTOUR)/2002 

overheating of s/c by solid rocket 
motor plume  vehicle lost 

 “Project reliance on analysis by 
similarity”[2] 

Wide-field InfraRed Explorer 
(WIRE)/1999 

electronics startup transient    early 
cover jettison  cryogen boil-off  
science mission lost 
 

 “failure to correctly identify the source of 
the signal which caused the Electro 
Explosive Device (EED) Simulator to 
"latch" upon Pyro Box power-up during 
spacecraft integration testing.”[3] 

Mars Polar Lander 
(MPL)/1998 
 

software flaw  descent engine shut-
off too soon  vehicle lost 
 

 “employed analysis as a substitute for test 
in the verification and validation of total 
system performance...tests employed to 
develop or validate the constituent models 
were not of an adequate fidelity” [4] 

Table 1 – Excerpts from recent NASA Mishap Reports 

 



The following definitions are provided to illustrate the 
subtle but important distinctions between different aspects 
of a V&V program. The commonly-used phrase 
“Verification proves the design is right; validation proves 
it is the right design” is correct but not very specific[6]. 
The author has used a combination of sources including 
the NASA Systems Engineering Handbook, ISO 9000 
Handbook, and personal experience to refine the common 
definitions as follows[7].  Verification is proof of 
compliance of the as-delivered system with specific 
requirements (i.e., “does what we built meet the 
requirements we wrote?”).  While proving compliance 
with top-level performance requirements can sometimes 
be a challenging task, the basic concepts behind 
verification are fairly straightforward and universally 
recognized, such as the use of verification matrices. 
Validation is a more nebulous concept and can be broken 
into three sub-definitions: requirements validation, model 
validation, and system validation. Requirements 
Validation is proof that the requirements (and hence the 
system design) should satisfy the customer’s Need or 
purpose before the system is actually built.   Model 
Validation is proof that the models and simulations to be 
used for requirements and system validation are correct. 
System Validation is proof that the as-delivered system 
(all project elements operating end-to-end in the expected 
flight environment with reasonable stressing conditions) 
will meet the driving Need (i.e., “does what we built meet 
the objectives?”). It is important to recognize  
these distinctions between Verification and Validation.   
 

The structure of a generic V&V program is shown in 
Figure 1.  The driving Need is used to set the initial 
requirements and is frequently referred back to as part of 
the validation activity. Initial model validation is done to 
ensure the models/simulation can be used safely to 
support requirements validation. In addition to 
performance analysis/modeling/ simulation, requirements 
validation includes risk analysis such as Fault Tree 
Analyses and Probabilistic Risk Analyses to ensure the 
design will be robust against failures or off-nominal 
situations. This will be discussed further in upcoming 
sections.  V&V requirements and a set of tracking 
matrices are used to cover requirements validation, model 
validation, verification, and system validation.   
 
System-level V&V, including roll-up from lower-level 
V&V, consist of testing and calibration (characterization) 
of the as-built system, analysis, modeling, and simulation 
of un-testable aspects, and inspection for others.  The 
output of the V&V activity includes updates to the V&V 
matrices and test/calibration data for updating the system 
models and simulations (for potential future use in flight).  
When the V&V matrices are complete, the system can 
finally be considered validated (should satisfy the Need).  
Of course, a system isn’t truly 100% validated until the 
mission is successfully operational but every project must 
strive to achieve a reasonable confidence level before 
launch. The definition of reasonable varies from project to 
project although most strive for > 90% confidence at 
launch. 
 

Figure 1 – Generic V&V Program Structure 
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Project Systems are (at least) three-dimensional in nature 
as illustrated in Figure 2.  Therefore, the V&V programs 
applied to them (and corresponding thought processes) 
must also be multi-dimensional. The key concepts behind 
this figure are as follows. First, to understand Validation, 
the system engineer must fully grasp the context in which 

the Project System “lives”. For most NASA missions, the 
goal is to obtain new Scientific Knowledge about some 
physical Phenomenon Under Study.  The Project System 
is that collection of “stuff” (hardware, software, people, 
processes, and facilities) that is created to operate in some 
environment(s) and provide the necessary bridge between 
the Phenomenon and Knowledge. The system engineer 
must be capable of visualizing the Project System’s 
“transfer function” in order to successfully validate it. 
Second, because in the real-world projects exist as 
complex, multi-dimensional constructs rather than simple, 
single-dimensional projections, one cannot really prove 
that it will work as Needed if Validation is only 
performed in isolated dimensions. Before moving on to 
discuss each dimension, there are two complications 
worth highlighting:  

 
(1) The dimensions are not entirely orthogonal so we 
must cognizant of where significant cross-coupling exists.   

(2)  Accurately perceiving the 3D-picture by gestalt is 
very difficult – instead, this requires multiple “looks” 

from different perspectives.  

Figure 2 – Project System Context & Multi-Dimensional Nature  
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There is an end-to-end or front-to-back aspect of any 
mission that spans its entire functional and performance 
space, which can be thought of dimensionally as width.  
The End-to-End Information System (EEIS) of a deep 
space mission is a good example of project width. The 
EEIS includes the acquisition of data (observables) from 
science instruments, through formatting and downlink by 
spacecraft avionics (command & data handling 
subsystem) and telecommunication subsystem, delivery 
via the Deep Space Network (DSN), and processing by 
the Ground Data System and subsequent Science 
Analysis.  The EEIS also includes the return path of 
mission planning and uplink commanding. 
 

 



The second dimension of a project is the top-to-bottom 
aspect or depth.  This is the realm of the performance 
error-budget and functional decomposition.  The risks 
inherent with working in this dimension are described in 
more detail in the upcoming section on Requirements 
Validation. The hierarchical structure of the project in the 
depth dimension is also illustrated by the familiar systems 
engineering “V-model” (Figure 3) which shows the 
process by which requirements are sub-allocated and 
validated on the downstroke  and then the design and as-
built system are verified and validated on the upstroke[5].  
Whereas verification is typically performed at all levels, 
validation in its most rigorous and comprehensive form 
occurs at the system level. However, in a well-executed 

project, some validation is performed at all levels. For 
example, a designer of an electronic board will typically 
perform a worst-case analysis to assess the design 
robustness to stressing conditions. Such lower-level 
validation activities are flowed upwards to the next level, 
playing a part in overall system validation. 
 
The third dimension of a project is time.  In this context, 
time has (at least) two distinct implications.  First, when 
planning validation activities one must carefully consider 
the functional evolution of the mission over time.  For 
example, a Mars lander has distinct mission-critical 
functionality unique to each mission-phase: Launch, 
Cruise, and Entry, Descent, & Landing (EDL). This 
phase-dependent functionality (particularly time-critical 
events and phase transitions) must be carefully considered 
by the systems engineer when designing validation 
activities (i.e., relying on a functional decomposition or 
depth view alone is not sufficient).   
 

Secondly, the time dimension is important in that the 
V&V program must consider the entire project life-
ccycle, from formulation, definition, development, test, 
operations, and data reduction (phases A through F in 
NASA parlance) even if the V&V effort itself is carried 
out primarily during the last year or two before launch.  
Figure 4 illustrates how the V&V program evolves over 
the project life cycle.  Note: while uplink command 
validation and software-patch validation are important 
during operations, they are considered peripheral to this 
discussion which is focused primarily on ensuring 
mission-readiness. 
 
The important point here is that the project must go 

through the exercise of drafting a V&V Plan early in 
definition phase and explore the above topics. 
Considering and agreeing on the overall risk posture and 
corresponding scope of the V&V program is essential to 
achieving the proper balance.  
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Figure 3 – Systems Engineering V-Model  

 
4. REQUIREMENTS VALIDATION 

 
In proving the system will meet the ultimate Need, 
validation must address several aspects of the 
requirements and system design: correctness, 
completeness, achievability, verifiability, and robustness.   
Clearly, the requirements governing the system design 
must be correct and complete in order to satisfy the Need.  
The requirements must likewise result in a design that is 
achievable given the allocated project resources.  To 
avoid unreasonable risk, requirements must be such that 
they can be verified once the system is built.  Finally, the 
requirements should result in a system that is both robust 
to variations in performance beyond the nominal 

 



operating range as well as robust in the presence of 
reasonable fault conditions. These points were driven 
home with lessons-learned in the wake of the Mars 
Climate Orbiter (MCO) and Mars Polar Lander (MPL) 
failures, namely: verification such as a Test Like You Fly 
philosophy can never relieve engineers of their top 
priority – to get it right the first time[8].   Specific 
recommendations in this area included: 

a) Avoid stating requirements in a negative 
sense (“shall not do X”) because they are 
notoriously difficult to verify 

b) Ensure that lower-level (e.g., subsystem) 
requirements are covered properly by a 
parent requirement at the system level – 
since the latter are generally subject to more 
rigorous, formal V&V and thus more likely 
to catch problems during later verification. 

c) Avoid compound requirements (e.g., “shall 
do X and Y”) as they are often difficult to 
validate together.  

 
The system engineer should maintain a mental check-list 
of the following considerations when validating 
requirements: 
 
• System complexity often defies the “black-box” 

model 
– Tight coupling/interdependencies 
– Pourous/amorphous interfaces      6. Early hardware/software testing 

• Systems are multi-dimensional – “hyper cube” model 

– Interdependencies often cross dimensional 
boundaries 

– Not always orthogonal 
• Requirements exist in one of two basic camps 

– What the system must be 
• Performance  

– How the system should behave 
• Functionality/Operability  

 
Given that Validation is a three dimensional problem it is 
important to study the driving requirements from multiple 
vantage points to avoid missing something critical.  The 
following tools and techniques are available for 
validation, each offering a unique and important 
viewpoint: 
 

1. Functional flow diagrams 
2. Performance Error Budgets 
3. State Analysis 
4. Performance Sensitivity Analyses/Models 

a. Merit Functions 
b. Monte Carlo Simulations 

5. Risk Analyses 
a. Fault Tree Analysis 
b. Probabilistic Risk Analysis 
c. Failure Modes, Effects, and 

Criticality Analysis 
d. Worst-Case Analysis 
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Figure 4 – V&V across the Project Life-cycle 

 



Functional Flow Diagrams
End-to-end system functionality (the “width” dimension 
of the V&V program) can be studied with functional flow 
diagrams. The exercise of understanding the logical flow 
between project elements from front-end to back-end 
offers insight into the adequacy of interface requirements 
and overall system utility.  In addition to addressing 
hardware/software aspects, functional flow diagrams are 
also important for studying operational processes and the 
requirements placed on them, particularly for human-
machine interactions and fault response.  
 
 
Performance Error Budgets 
Likewise, comprehensive error budgets are useful in 
understanding the top-to-bottom flow of performance 
requirements and capabilities (addressing the depth 
dimension of V&V). A simplified example of an error 
budget from the Kepler planet-detection mission is shown 
in Figure 5. The driving Need/Science Objective and 
resulting top-level system requirements are highlighted. 
Error budgets also represent an example of the temporal 
aspect of validation.  Early in the project, engineers use 
error budgets in a top-down mode to sub-allocate 
performance requirements to the different elements. Then, 
as the project progresses and design maturity improves, 
the error budgets are used in a bottom-up mode to predict 
the expected performance.  Improving the fidelity of the 
error budgets in this fashion is one goal of the model 
validation effort. 

 

A potential pitfall to watch for in error budgets is the 
appropriate treatment of systematic errors versus 
uncorrelated, random noise.  This topic is beyond the 
scope of this paper, but the performance analyst must be 
scrupulous in understanding and accounting for the 
effects of systematic errors and the calibration and error 
rejection techniques employed in data-reduction.  
Carefully accounting for small errors and residuals are 
necessary to avoid being either over-conservative or too 
optimistic in estimating overall system performance.  
System engineers should demand that performance error 
budgets explicitly depict all potential error sources (even 

if the magnitude of the error contribution is negligible, the 
exercise must be completed).  

Figure 6 – Science Merit Function (Sensitivity Analysis) 
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Robustness and Graceful Degradation 
Projects sometimes make the mistake of unintentionally 
creating requirements and designs that result in operation 
at or near “cliffs”.  While a system may be designed to 
meet performance specifications within a fairly tight set 
of tolerances around a required central value, it may fail 
precipitously in the event of relatively minor excursions 
from the region of nominal operation.  The concept of 
graceful degradation is key to successfully implementing 
deep-space systems in the faster, better, cheaper 
environment.  Properly executed validation programs 
enable graceful degradation by using performance 
sensitivity analyses and design risk analyses to identify 
cliffs and soft-spots, thus providing the project sufficient 
insight to guide risk versus cost (mitigating action) trades. 
  
Performance Sensitivity Analyses 
Merit Functions and Monte Carlo simulations are two 
useful tools for assessing the robustness of a system in 
terms of its overall performance.  Monte Carlo 
simulations are well-described in the literature and can be 
very helpful for perturbing system parameters such as 

 



spacecraft pointing jitter in stressing cases to assess the 
impact on top-level performance[6].5
 
Merit Functions are models that provide the system 
engineer and the customer (such as a Principal 
Investigator or PI) with a method of studying the 
sensitivity of the mission Need to changes in key mission 
parameters. Another way of thinking about this is: what is 
the science sensitivity to the mission parameters?   
 
As an example, consider the Kepler mission. The PI has 
identified a Need to determine the frequency of terrestrial 
planets in the habitable zones of solar-type stars.  The 
quality of the Science produced (i.e., the number of 
appropriate planets found per star observed) is some 
function of a few key mission parameters: instrument 
precision,  detection signal-to-noise ratio (SNR), # of stars 
observed, # of years observed.  To determine the 
sensitivity of the Kepler “science goodness” we can 
establish some Merit Functions that allow us to study 
crucial “partial derivatives”: 

identified a Need to determine the frequency of terrestrial 
planets in the habitable zones of solar-type stars.  The 
quality of the Science produced (i.e., the number of 
appropriate planets found per star observed) is some 
function of a few key mission parameters: instrument 
precision,  detection signal-to-noise ratio (SNR), # of stars 
observed, # of years observed.  To determine the 
sensitivity of the Kepler “science goodness” we can 
establish some Merit Functions that allow us to study 
crucial “partial derivatives”: 
    

Again, the goal is to deliver a system that is robust to 
variations in the key mission parameters by remaining in 
the flat portion of the performance curve. Figure 6 
provides another, hypothetical example of a Merit 
Function in which the sensitivity of the science goodness 
with respect to instrument precision is plotted.  The X 
marks the intersection of the Baseline Science Need with 
the Required  Precision (the former should have driven 
the latter during synthesis).  The small box around the X 
represents the Region of Nominal Operation.  The Region 
of Robust Operation is defined by a combination of the 
Science Floor (minimum mission success criteria) and the 
edge of the “cliff” which marks the boundary of the 
Region of Non-Graceful Degradation. The mission should 
strive to work properly within the Region of Robust 
Operation. 

Again, the goal is to deliver a system that is robust to 
variations in the key mission parameters by remaining in 
the flat portion of the performance curve. Figure 6 
provides another, hypothetical example of a Merit 
Function in which the sensitivity of the science goodness 
with respect to instrument precision is plotted.  The X 
marks the intersection of the Baseline Science Need with 
the Required  Precision (the former should have driven 
the latter during synthesis).  The small box around the X 
represents the Region of Nominal Operation.  The Region 
of Robust Operation is defined by a combination of the 
Science Floor (minimum mission success criteria) and the 
edge of the “cliff” which marks the boundary of the 
Region of Non-Graceful Degradation. The mission should 
strive to work properly within the Region of Robust 
Operation. 
  
Note: science floor is the most important driver when 
setting the Region of Robust Operation.  In this idealized 
example, the design has been cost-optimized such that the 
science floor intersects the knee in the curve (it is of 
course acceptable and preferable to have some distance 
between the two).   

Note: science floor is the most important driver when 
setting the Region of Robust Operation.  In this idealized 
example, the design has been cost-optimized such that the 
science floor intersects the knee in the curve (it is of 
course acceptable and preferable to have some distance 
between the two).   
  
Early Hardware/Software TestingEarly Hardware/Software Testing
When performance sensitivity analyses and design risk 
analyses identify a potential cliff or soft spot, it is often 
prudent to perform early tests using engineering model 
hardware and/or software testbeds to confirm such 
predictions and/or assess mitigating designs.  Again, such 
tests are only as good as their design – a well thought-out 
V&V plan can guide what and how to test during a 

Figure 7 – V&V storyboard for SIM wide-angle astrometric accuracy
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project’s definition phase. 
 

5. MODEL VALIDATION 
 
Models (including simulations) play important roles both 
in requirements validation as well as subsequent 
verification and system validation.  The uses of models in 
requirements validation were described above.  For the 
later phases of V&V, models are often used to “bridge the 
gaps” in the system verification and validation effort that 
cannot be directly tested.  Some models (or certain 
aspects of them) should be considered mission-critical if 
errors in such areas could mask problems leading to 
failures in the operations phase of the project.  
 
In a cost-constrained project, the following minimum 
approach should be used to identify and validate mission-
critical models and simulations:  
 

1) In early drafts of the Project V&V Plan, identify 
the mission-critical models (create verification 
and system validation “storyboards” and show 
where and how models and simulations fit into 
the overall scheme relative to testing). 

2) Establish requirements on mission-critical model 
functional capabilities and accuracy 

3) Validate the mission-critical models in terms of 
those driving requirements 

4) Maintain configuration control of the validated 
models (treat as mission- critical software) 

 
An example of the V&V storyboard effort is shown in 
Figure 7. This addresses the plan for verifying the SIM 
astrometric performance requirement. Due to practical 
constraints, this effort involves a mixture of tests and 
modeling.  The critical roles played by some models are 
circled, such as those needed to propagate the 
performance of each interferometer (single-baseline) to 
integrated system performance (3 baseline) or the 
incorporation of astrometric grid closure in assessing the 
ultimate 5 year mission accuracy. 
 
Veteran analysts will admit that model validation is not 
straightforward in a quantitative, statistical sense and that 
much emphasis will likely be placed on fairly subjective, 
qualitative techniques[9]. Using a mix of model validation 
techniques in complementary fashion can reduce the risk 
of errors. Such techniques include[10]: 
 

1) Face validation: inspection of model results by 
experts on the system being studied to confirm 
the model seems reasonable & provides the 
required functional capabilities 

2) Peer review:  independent review of the 
theoretical underpinnings and detailed 
examination of model internal components 

3) Functional decomposition and test: also called 
piece-wise validation, inject test data into 

individual code-modules and compare actual 
output with predicted output 

4) Comparison or empirical validation:   compare 
performance of the model against performance 
with the physical system being modeled (or a 
similar system) 

 
Comparison or empirical validation is a preferred 
technique and ideally provides quantitative estimates of 
model credibility or accuracy via cost functions such as 
Theil’s Inequality Coefficient (TIC) and multivariate 
statistics[11,12]. 
 
In practice there are several limitations to this concept, 
chief among them:  the final form of the system being 
modeled does not yet exist in the early phases of the 
project when the model is being used for requirements 
validation.  This situation can often be remedied later in 
the project when the real system is undergoing test and 
can be used to support model evolution, although care 
must be taken to isolate noise induced by test artifacts 
from inherent system noise when making comparisons. In 
the early phase of the project, such model comparisons 
with real systems can sometimes be accomplished by 
modifying the model’s capabilities to describe a similar 
existing system (thus validation by similarity).  
 
A final word on Model Validation: a key to achieving 
model fidelity is to apply the proper rigor in designing the 
model. The aerospace community has embraced the 
concept of Test As You Fly (TAYF) on the verification 
front.  We could likewise benefit from a analogous 
concept of Model As You Fly (MAYF), some basic 
guidelines for which are offered here: 
 
1) Project should follow the “model as you fly; fly as you 
model” philosophy throughout its V&V activities. “Model 
as you fly” (MAYF) means: 

• a.   Mathematical models and simulations of 
physical processes and error sources 
(astrophysical and instrumental), hardware, and 
operational algorithms shall replicate to the 
maximum extent possible, the “real thing” (e.g., 
what the project system, environment, and 
algorithms will do in flight). 

• b. These models and simulations should preserve 
spatial and temporal information and the same 
“causality” expected in flight (including order of 
occurrence) 

 
2) MAYF is applicable to all “critical” models & 
simulations used to support an Analysis which serves as a 
primary Verification Method.  
 
3) Exemptions to the MAYF philosophy, including 
characterization of differences between 
Modeled/Simulated and Flight conditions, should be 
documented in the MAYF Exemptions List and reported 
at Mission Readiness Review. 

 



 
 

6. SYSTEM VALIDATION 
 
Even if requirements and model validation result in a 
design that should meet the ultimate Need, and 
Verification proves that all formal requirements have 
been met, System Validation is necessary to prove the as-
built system in fact does satisfy the ultimate Need.  
 
System Validation goes beyond Verification – the 
primary intent is to assess robustness. When planning 
System Validation activities, the system engineer should 
be encouraged to explicitly AVOID looking at the 
requirement documents – instead think about “what needs 
to happen”. While this may sound heretical, it’s important 
to recognize that Validation is an organic rather than 
algorithm process and to pursue it accordingly. 
 
Some primary System Validation methods include: 
 

1. End-to-End Info System (EEIS) Testing 
• Addresses overall COMPATIBILITY of the 

Project information systems (command, 
data, timing, etc) 

     
2. Mission Scenario Tests (MSTs) 

• Ensures flight h/w and all s/w can execute 
the mission under flight-like conditions 
(nominal & contingency) – but not on the 
flight time-line 

 
3. Operations Readiness Tests (ORTs) 

• Demonstrates that all elements of the ground 
segment (software, hardware, people, 
procedures, & facilities) work together to 
accomplish the mission plan – i.e., using real 
timelines 

• Include Flight Segment for at least 1 or 2 of 
these and exercise key nominal and 
contingency operations 

     

   

4. Stress-Testing (or Risk-Reduction Testing) 
• Demonstrates robustness to off-nominal 

conditions 
 

5. Analysis & Simulation 
• Everything not covered by the above  

 
 
To organize the System Validation program and ensure 
proper coverage, the System Engineer should develop and 
maintain a Validation Matrix which describes for each 
Key Functional Capability (usually by Mission Phase), 
how it is Validated – i.e., using which of the above 
methods, what “venue” (flight vehicle, testbed, simulator, 
etc).  Note that this is similar to but independent of the 
traditional Verification Matrices – however, it is certainly 

appropriate to compare the two for purposes of 
eliminating unnecessary duplication. 
 
A related concept is that of the incompressible test list 
which identifies the minimum set of tests that must be 
performed prior to certain project milestones such as 
launch, regardless of schedule and budget pressures.  
Once established, any changes to this “line in the sand” 
list must be approved by an unbiased, independent review 
authority (usually external to the project).  
 
As mentioned previously, validation does not follow the 
same well-established policies as verification. When 
starting to put together a system validation matrix, the 
engineer may struggle with “how to start?”.  However, the 
same techniques discussed above in the section on 
Requirements Validation can be applied in generating 
such a matrix, which will define what validation tests are 
performed.  
 
Validation should include Operational Readiness Tests 
(ORTs) that assess how the end-to-end system will really 
perform when all the flight and ground hardware, 
software, people, and operational procedures come 
together. Cross-system compatibility tests or 
“scrimmages” to validate things such as flight-ground 
interfaces are useful pre-cursors and complementary 
activities to ORTs. Another key component of system 
validation is stress testing and simulation, in which 
system robustness to variations in performance and fault 
conditions are assessed.  The Region of Robust Operation 
in Figure 6 depicts the space over which system 
performance should be tested. Likewise, the results from 
system Fault Tree Analysis should guide the definition of 
Mission Scenario Tests, which include fault injection.     
 
The importance of such stress testing and simulation was 
cited in the WIRE failure report: “Testing only for correct 
functional behavior should be augmented with significant 
effort in testing for anomalous behavior”[3]. Likewise 
from the MPL mishap report: “The flight software was 
not subjected to complete fault-injection testing. System 
software testing must include stress testing and fault 
injection in a suitable simulation environment to 
determine the limits of capability and search for hidden 
flaws”[4]. Some projects rightly claim they cannot do full 
fault-injection testing with the flight system without 
incurring excessive risks or costs. However, the solution 
is to invest in software testbeds to do this. Again, an early 
V&V Plan can identify the need for such testing and the 
required testbed capabilities. 
 
 
Stress-testing validates the design by demonstrating 
system robustness by exercising over a broad parameter 
space – including beyond nominal. Some guildelines for 
planning stress-tests include:  

1. Stress testing must be performed to determine 
capability boundaries and demonstrate 

 



robustness of designs, in order to assure health/ 
safety and provide confidence in project 
validation. 

2. Stress testing must consider single faults that 
cause multiple-fault symptoms, occurrence of 
subsequent faults in an already faulted state, etc 
(going beyond the traditional Fault Protection 
Verification program).  

3. Stress testing will be performed on the integrated 
Flight Segment whenever it can be done safely 
and within resources.  Otherwise it should be 
done in the System Test Bed. 

 
Note that stressing in this context does NOT imply 
physically stressing the flight h/w. Planning such things 
also requires prioritization (balancing risk vs project 
resources) to determine which tests to run. Stress-test 
planning can benefit from a two-pronged approach.    

• ORGANIC: Use brain-storming sessions 
with designers to identify what-ifs 

 
• ALGORITHMIC:  Use results of Analyses 

to identify “soft” spots 
 Fault-Tree Analysis 
 State Analysis 
 Performance Sensitivity Analysis  

 
 

7. THE ROLE OF FAULT-TREES 
 
The need for system-level risk analysis as part of the 
project validation program was highlighted in the findings 
of the 1998 MPL Mishap Investigation Board:  “A fault-
tree analysis (FTA) was conducted by the project before 
launch for specific mechanisms and deployment systems 
where redundancy was not practical. No system-level§ 
FTA was formally conducted or documented…The 
greatest value of system-level FTA is to identify, from a 
top-down perspective, critical areas where redundancy 
(physical or functional) or additional fault protection is 
warranted”[4]. 
 
 Likewise, the MCO mishap investigation noted that a key 
contributor to that mission loss was:  “Absence of a 
process, such as fault tree analysis, for determining ‘what 
could go wrong’ during the mission”[13]. 
 
Fault Tree Analysis (FTA) is a crucial tool  for assessing 
the robustness of a system to failure modes. An FTA is 
simply an exercise in which the system engineer considers 
“what has to happen for the mission to succeed” (or 
conversely, fail) and then de-composes this in a logical 
fashion. This is very useful in later phases of system 
validation, particularly test planning.   
 
It is fairly standard practice for projects to employ some 
form of FTA to assess reliability of individual mechanical 
                                                           
§ Emphasis mine. 

actuators. Unfortunately, the use of FTA to study overall 
system-level robustness is used less consistently.  Recent 
projects such as Mars Odyssey have benefited from the 
MCO/MPL lessons-learned and implemented rigorous 
FTA and Risk Assessment programs, guidelines for which 
have been well documented in the literature[14].  
 
In addition to system-level FTA, lower-level design risk 
analyses are necessary to ensure integrated system 
robustness. A companion to FTA is the Failure Modes, 
Effects, and Criticality Analysis (FMECA). A cognizant 
engineer for an assembly is responsible for insuring by 
analysis that failures in that assembly cannot propagate to 
other assemblies (e.g., a short-circuit condition). FMECA 
therefore tends to be focused on the interfaces between 
project elements. Additionally, Functional FMECAs can 
be performed to identify failure modes associated with 
key functions (as opposed to a device- or interface-centric 
view). FMECAs, when combined properly with system 
FTA, help ensure the objective of fault containment is 
met.  
 
It should be stressed that Risk Analysis in general and 
FTA in particular are activities that span the project life-
cycle. They should begin in Definition phase, become 
particularly active around the time of Critical Design 
Review, and continue into the Operations phase and 
planning for operations (in terms of contingency 
planning). This “healthy questioning of what might go 
wrong” is frequently cited as a good feature of a 
successful project culture[10].  However, in order for Risk 
Analysis to be effective, the person responsible for 
leading this effort must have sufficient time, broad 
perspective, and management-supported clout to keep a 
watchful eye across the project and ferret out risks before 
they develop into unrecoverable problems. This person is 
a key link in the project’s risk-avoidance chain and 
having a “Sherlock Holmes approach and a bulldog’s 
disposition to pursue strange indications while the rest of 
the team is distracted” (well into operations) is vital[8].  
One final point about FTA, this activity is ideally done 
independently – even if it involves project personnel 
involved in requirements synthesis. Taking a fresh look 
from another angle serves as a form of independent 
requirements validation. 
 
Some guidelines for Mission Fault Tree Analysis include: 
 

• Mission-level FTA starts with a Mission Success 
Tree which is inverted to form Mission Level 
Fault Trees by Mission Phase 

• Mission-level FTA should “come down” and 
meet subsystem-level Fault Trees “coming up”  

• Project Systems Engineering is responsible for 
Mission-level FTA, delegated to the Fault 
Protection Team who also does the subsystem 
level FTA (with support of the subsystem 
designers) 

 



• Mission-level FTA assists with Stress-
testing/validation by identifying specific failure 
modes 

 
A final use of Fault Trees Analysis is identifying 
soft-spots in actual test design.  Particularly complex 
and critical tests should have fault-trees developed to 
clearly identify “where this can go wrong” and add 
appropriate mitigating features. 

 
 

 
8. SUMMARY 

 
In conclusion system engineers should keep the following 
points in mind when validating a complex system: 
 

1. Validation is not the same as Verification 
2. Validation occurs across the project life-cycle 
3. Projects (& Validation efforts) are 3-dimensional 
4. Requirements Validation involves 5 questions 
5. Use storyboards to identify critical models 
6. Model As You Fly (MAYF) 
7. Performance Robustness  Merit Functions 
8. Functional Robustness  State Analysis & 

Stress-Testing 
9. Recognize & Manage Uncertainty Factors for 

Testing & Models 
10. Identify & Correct soft spots  Fault Trees 
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